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In this work, we discover the existence of multiple modes of vortex-induced vibration of a tethered
sphere in a free stream. In addition to the first two modes, defined as Modes I and II, and found
originally by Govardhan & Williamson (1997), we find the existence of an unexpected Mode I11I at
much higher normalized velocities (U*). This third mode, involving large-amplitude and remark-
ably periodic vibrations, was discovered by changing our focus from “light”, or buoyant, tethered
spheres in a water facility (where relative density, m* < 1), to “heavy” spheres in wind tunnel
facilities (where m* > 1). In this manner, we are able to achieve a very wide range of normalized
velocities, U* = 0 — 300, and investigate a wide range of masses, m* = 0-1 — 1000. The first two
modes might be identified as analogies to the 2S and 2P modes for an excited cylinder
(Williamson & Roshko 1988), and can be associated with a lock-in of the vortex formation
frequency with the natural frequency. These modes of sphere dynamics occur within the velocity
regime U* ~5 — 10. However, our Mode III occurs over a broad range of high velocity
(U* ~ 20 — 40), where the body dynamics cannot be synchronised with the principal vortex
formation frequency. At extremely high velocities (U* > 100), we find yet another mode of
vibration that persists to at least U* > 300, which we define as Mode IV, but in this case the
unsteady oscillations are characterized by intermittent bursts of vibration. Regarding the
periodic Mode I11, it cannot be explained by classical “lock-in” of the principal vortex shedding
and body motion, and one is left with a tantalizing question: What causes this unexpected
periodic high-speed mode of vortex-induced vibration? © 2001 Academic Press

1. INTRODUCTION

THE cAsk of a tethered sphere vibrating in a fluid flow is perhaps one of the most basic
fluid-structure interactions that one can imagine. By a wide variation of the mass of the
sphere, one can consider the case of an underwater tethered buoyant body, or indeed
a “heavy” sphere in air flow, acting as a pendulum, as examples of essentially the same
general problem. It is quite surprising that, despite the fact that tethered bodies are quite
ubiquitous in engineering, very few investigations have shown whether a tethered sphere
will oscillate in a steady fluid flow or current. It was demonstrated by Williamson
& Govardhan (1997) and Govardhan & Williamson (1997), that such a structure will indeed
vibrate vigorously at large amplitude, and these oscillations have a direct impact on the
tether angle and drag coefficient. Gross errors in predictions of mean response of a tethered
structure will ensue unless one takes account of their tendency to vibrate. Other studies in
the literature are concerned with the action of surface waves on tethered buoyant structures,
and they employ empirically-determined drag and inertia coefficients to predict sphere
dynamics (Harleman & Shapiro 1961; Shi-Igai & Kono 1969; Ogihara 1980).

In this work, we define a sphere as either “light” or “heavy”, depending on the value of the
relative density or mass ratio, m* (where m* = mass of sphere/mass of displaced fluid):

“Light” sphere: m* < 1,

“Heavy” sphere: m* > 1.
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Figure 1. (a) Schematic of the experimental arrangement for the “light” and “heavy” tethered sphere. (b) Typical
trajectories of sphere motion for “light” spheres.

Most of the studies in Govardhan & Williamson (1997) involved “light” spheres, where the
tethered bodies in our Water Channel facility were buoyant, and typical trajectories were
found to be of figure-of-eight or crescent topologies, as shown in Figure 1. The oscillation
amplitudes transverse to the fluid flow (y-direction) are always found to be much larger than
streamwise motions (x-direction), especially as the spheres become “heavy”. It was shown in
Williamson & Govardhan (1997) that the normalized amplitude (A* = A/D = ampli-
tude/diameter) can be suitably collapsed using the normalized velocity U* = U /fyD (where
U is the free-stream velocity, fy the natural frequency in the fluid, and D the diameter), as
could be expected on dimensional grounds. In the case of the vortex-induced vibration of
a cylinder, such response plots show a resonance when the vortex shedding frequency f is
close to the natural frequency of the structure fy, which corresponds to a velocity
U* ~1/S=5, where S is the Strouhal number. The response of the sphere, in Figure 2,
shows just such a resonance at U* ~ 6, which we define as the Mode I response, and this
corresponds to the vortex formation frequency lying close to the (calculated) natural
frequency of the tethered body.

At higher velocities (U* > 8), a Mode II periodic vibration appears, with large amplitudes
close to one diameter, and in the case of the low mass, m* = 0-8, the extent of the
synchronization regime (the range in U* over which large vibrations are observed) seems to
persist to the limits of our facility, i.e. to at least U* > 15. It is known that increasing the
mass of a vibrating structure will decrease the sychronization regime; in the case of the
vibrating cylinder, predictions of this effect can be made (Govardhan & Williamson 2000).
In the case of sphere dynamics, by increasing the mass from m* = 0-8 to 2-8, the end of the
synchronization regime reduces to U* = 11, as shown in Figure 2, and thus can be reached
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Figure 2. Amplitude response (4*) versus normalized flow velocity (U*), showing Modes I and II sphere

oscillations: (a) m* = 0-8, (b) m* = 28, (c) m* = 28.
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within the flow speed limits of the water facility. It was naturally felt that any further
increase in fluid velocity, beyond the limit of the Mode II regime (in the latter case, beyond
U* = 11), would yield negligible amplitudes, and exhibit no further modes of response.
However, one particular “strange” result from the Water Channel for m* = 28 showed an
upsurge in the amplitude close to the limits of the facility flow speed, and beyond the Mode
IT regime, as shown in Figure 2. Our assumption for some months was that this was
a problem with possible flow turbulence, as the channel was operating at “flat out” speed. In
order to shed light on this problem, we decided to shift our efforts to wind tunnels, and
purposely increase the mass ratio, m*, beyond the maximum value possible in a water
facility, and to enable much higher flow speeds to be studied, thereby permitting a much
larger range of normalized velocities, U*.

This paper presents the principal results from the research performed using the wind
tunnels. We have been able to use large mass ratios, from m* = 80 up to 940, and we have
achieved a very wide range of normalized velocity, U* = 0-300. We shall see that not only
was the upsurge in amplitude, mentioned above, a “real” effect, but that it is part of a wide
regime of highly periodic large-amplitude vibrations. This is completely unexpected, be-
cause, at these high speeds, the vortex formation frequency is far above the vibration
frequency, such that several cycles of vortex structures will be formed over a single period of
body motion, and therefore the classical “lock-in” cannot occur. At higher velocities,
beyond U* = 100, we discover yet another mode of response, but in this case the oscilla-
tions are highly unsteady, and they occur in intermittent bursts.

2. EXPERIMENTAL DETAILS

The experiments described in the Introduction, which utilized the Cornell-ONR Water
Channel, were conducted as part of Govardhan & Williamson (1997, 2000) and are
described in detail therein. The wind tunnel experiments here involve the use of
a 12inx 121in (test-section) wind tunnel, and an 18inx 18 in tunnel (lin = 254 mm).
Typical spheres in this study had diameters of 6:9 and 7-6 cm, and had masses of 16:5 and
259-1 g, giving mass ratios of 80 and 940, and were tethered to the roof of the tunnel using
fine polymer wires, of 0-001 in diameter. Displacement was measured using an optical
biaxial displacement transducer, which was oriented upwards from beneath the wind tunnel
lucite floor. We shall define the normalized amplitude of the transverse (y) oscillations,

unless otherwise noted, as A* = ﬁ Vems/D, Which, for purely sinusoidal oscillations, is
simply A* = A/D.

3. DISCOVERY OF MODE “III”: A HIGH-VELOCITY RESPONSE MODE

By using the wind tunnels, we are able to explore the sphere dynamics at high normalized
velocities, beyond the regimes of Modes I and II, using a sphere of mass, m* = 80. We
discover a new and unexpected mode of vibration, which we define as Mode 111, and which
is shown clearly in Figure 3, extending in a very broad regime of U* from 20 to 40. This
shows immediately that the upturn of data found in the Water Channel at the upper limit of
flow speeds is in fact a real effect, and was a rather serendipitous signal of the beginnings of
a significant regime of periodic vibrations, which we might otherwise have overlooked.
However, suspicion remained that the results, though apparently real, could be related with
the proximity of the sphere to the tunnel walls, or with the blockage of the sphere in the test
section. For this reason, we relocated the complete experiment from the 12 in x 12 in tunnel
to a larger tunnel of cross-section 18 in x 18 in, and found good agreement between the data
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Figure 3. Amplitude (4*) and frequency ( f*) response over a large range of U*, showing the very broad regime
of periodic Mode III oscillations (U* = 20-40). The oscillation frequency (f) remains close to the natural
frequency (fy) over the observed range of U*;f,, is the non-oscillating shedding frequency. @, m* = 80

(12in x 12 in wind tunnel); O, m* = 80 (18 in x 18 in wind tunnel); [J, m* = 940 (18 in x 18 in wind tunnel).
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of the two tunnels. Finally, we studied the dynamics of a very heavy sphere of mass ratio,
m* = 940, in the larger tunnel, and found again the Mode III response regime, as shown in
Figure 3. These experiments provide good evidence for the existence of this mode of
vibration.

The sphere dynamics of Mode III are remarkably periodic, as indicated by the typical
time traces of displacement in Figure 3. The oscillation frequency ( /) remains very close to
the natural frequency ( fy) of the tethered sphere (i.e. f* = f/fy ~ 1), which is a consequence
of the high mass of the spheres in this case. [Very low mass ratios yield oscillation
frequencies which are higher than, and depart significantly from, the natural frequency, as
shown in Govardhan & Williamson (1997)]. The existence of such a Mode III was
completely unforeseen, because such a regime does not exist in the case of the cylinder free
vibration, and also because it must reflect the presence of between 3 and 8 wavelengths of
vortex formation, for each wavelength of body vibration. Therefore, this mode cannot be
explained as a classical “lock-in” of the principal vortex shedding frequency with the body
oscillation frequency.

For this high-speed mode of vibration to exist, there must be a net energy transfer from
the fluid motions to the body motions, over each cycle of sphere oscillation. If one assumes
that the transverse displacement ( y) and force (F) are represented by the following functions:

¥(t) = A sin(wt),
F(t) = F,sin(w,t + ¢)

and that the system damping and stiffness are linear, then one can simply show that the net
energy transfer over a cycle of body oscillation (E;,) is given by

T
E;, = (F, A w)sin q’)j cos(wt)cos(w,t) dt.
0

This integral is only nonzero if = w,. In other words, as one might expect, there is only
energy transfer if there is a periodic component of the fluid force synchronized with the
body oscillation frequency. The principal vortex structures are formed at a frequency much
higher than the body oscillation frequency, and these cannot be expected to contribute to
the body dynamics.

However, there must exist vortex dynamics which are repeatable in each cycle, and which
give rise to the fluid forcing component that is synchronized with the body motion.

One should note that it is possible that the vortex shedding is modulated by the
low-frequency body motion, such that self-excited motion will ensue. Although the exist-
ence of this Mode 111 is reported in this paper, the vorticity dynamics, which would explain
its existence, will be explored in Govardhan & Williamson (2001), using the DPIV
technique.

4. MODE “IV”: INTERMITTENT BURSTS OF LARGE AMPLITUDE VIBRATION

With further increase of normalized flow speed, beyond the regime for Mode I1I, one might
finally expect negligible response amplitude, and this is the case until about U* = 100.
However, beyond this speed, we discovered yet another vibration mode, that grows in
amplitude and persists to the limit in flow speed of our wind tunnel (in excess of U* = 300),
as shown in Figure 4. (We must expect that the amplitude of this mode will ultimately
saturate at sufficiently high velocity.) In this case, the sphere dynamics are not close to
periodic, and are characterized by intermittent bursts of large-amplitude vibration, as may
be seen in the typical displacement time traces in Figure 4, at U* = 120 and 220. These
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Figure 4. Amplitude response and “periodicity” (\/5 Vems/Vmax) Versus the normalized flow velocity (U*),
showing that the Mode IV oscillations are not close to periodic. The “periodicity” is close to 1-0 for Modes I-111,
indicating that these modes are quite sinusoidal.
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Figure 5. Position spectra in the different sphere oscillation modes for m* = 940. Interestingly, although Mode
IV has a low “periodicity”, the vibration frequency (f) remains close to the natural frequency (fy) ie.

I =Jflfx = 10.

intermittent vibrations may be contrasted clearly with the periodic vibrations of Mode III,
also shown in the figure, for U* = 30.

A measure of the periodicity of the displacement may be given by plotting what we call
the “periodicity” = (\/5 Vems/Vmax)> @8 @ function of velocity, U*. A purely sinusoidal func-
tion has a value of “periodicity” equal to 1-0, and so the vibration Modes I, IT and III are
evidently strongly periodic, as also shown by the spectra in Figure 5. Mode 1V, as expected
has a low “periodicity”, but interestingly, despite the bursts of large-amplitude vibration for
this mode, the vibration frequency remains very close to the natural frequency throughout
the range of velocity up to at least U* = 300, as shown by the typical spectrum in Figure 5.
Clearly, the much higher principal vortex shedding frequency (around 40-50 times the
vibration frequency) is not itself responsible for these large vibrations! The origin of these
large transient bursts of vibration remains unknown.

5. CONCLUDING REMARKS

In this paper, we present evidence for the existence of an unforeseen, highly periodic mode of
vortex-induced vibration for a tethered sphere, which occurs at speeds far above what might
be expected, based on classical “lock-in”. The sphere appears to oscillate at large ampli-
tudes, which can be up to one diameter for spheres of moderate mass ratio (m* ~ 10), over
a broad range of normalized velocities, U* = 20-40. Vibration modes of a tethered sphere,
which might be explained in terms of classical lock-in of the vortex frequency with the body
frequency, have been discovered in Govardhan & Williamson (1997, 2001), and defined
there as Modes I and II.

However, for the present high-speed “Mode II1”, the principal vortex shedding frequency
is from 3 to 8 times the body oscillation frequency, and so the classical lock-in of frequencies
cannot explain this vibration mode. Nevertheless, in order for these remarkably periodic
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vibrations to occur, there must be a component of fluid force that is exciting the body at its
oscillation frequency. One may suggest that the body vibration is causing some modulation
to the vortex formation sufficient to provide a fluid force at the vibration frequency, and
with the right phase (between force and displacement) to excite such vibration. Indications
of this are suggested by further work using force, displacement and vorticity measurements
in Govardhan & Williamson (2001). One might suggest that the high-speed Mode III
vibrations are the result of a “movement-induced vibration” of the type classified in
Naudasher & Rockwell (1993), such as flutter and galloping, where the body dynamics may
be explained in terms of quasi-steady analysis. In our case, the body is spherically symmet-
ric, so a direct link is not evident. A further unsteady mode of vibration (defined here as
Mode 1V), characterized by intermittent burst of large amplitude, is found for extremely
high velocities beyond U* = 100, and the origin of this mode remains unknown.
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